输出 abcdefghij 任取 5 个字符所有组合,不能有重复,输出到控制台
格式:
第 1 种组合:a,b,c,d,e
第 n 种组合:....
......
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
#include <iostream>
using namespace std;
string s = "abcdefg";
int cnt = 1;
int size = 0;
char comb[5];
void solve(int idx) {
if (size == 5) {
printf("第%d种组合: %c, %c, %c, %c, %c\n", cnt++, comb[0], comb[1], comb[2],
comb[3], comb[4]);
return;
}
for (int i = idx; i < s.length(); i++) {
comb[size++] = s[i];
solve(i + 1);
size--;
}
}
int main(int argc, char *argv[]) {
solve(0);
return 0;
}
|
设计一个模拟测试系统。输出 0-50 以内 2 个随机数的加或减。从键盘输入答案,每题有2次机会,第一次答对得10分,第二次答对得5分,总共10题,最终输出总得分。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#include <iostream>
using namespace std;
int main(int argc, char *argv[]) {
int score = 0;
for (int i = 0; i < 10; i++) {
int a = rand() % 51, b = rand() % 51, c = rand() % 2;
int guess, ans;
char op;
if (c == 0) {
op = '+';
ans = a + b;
} else {
op = '-';
ans = a - b;
}
for (int j = 0; j < 2; j++) {
printf("%d %c %d = ", a, op, b);
scanf("%d", &guess);
if (guess == ans) {
cout << "right" << endl;
score += (10 - j*5);
break;
} else {
cout << "wrong" << endl;
}
}
}
printf("score = %d\n", score);
return 0;
}
|
输出树的层次遍历的奇数层的所有结点。从input_3.txt
输入,输出到output_3.txt
。
输入格式:
A B C
B E
C F G
树
A
/ \
B C
/ / \
E F G
输出格式:
第 1 层结点:A
第 3 层结点:E,F,G
- 如何用给定的输入方式构建实际的树?用
map<char, TreeNode *>
来建立字符到结点的映射。
- 写一个层次遍历来输出奇数层的结点。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
#include <fstream>
#include <queue>
#include <sstream>
#include <unordered_map>
using namespace std;
struct TreeNode {
TreeNode *lchlid, *rchild;
char val;
TreeNode(char val) : lchlid(nullptr), rchild(nullptr), val(val) {}
};
int main(int argc, char *argv[]) {
ifstream ifs("./input_3.txt");
ofstream ofs("./output_3.txt");
unordered_map<char, TreeNode *> nodeMap;
char a, b, c;
string line;
TreeNode *root, *t, *l, *r;
ifs >> a;
root = new TreeNode(a);
nodeMap[a] = root;
ifs.putback(a);
while (getline(ifs, line)) {
istringstream iss(line);
iss >> a >> b;
if (!nodeMap[a]) {
nodeMap[a] = new TreeNode(a);
}
if (!nodeMap[b]) {
nodeMap[b] = new TreeNode(b);
}
t = nodeMap[a];
l = nodeMap[b];
t->lchlid = l;
if (iss >> c && !nodeMap[c]) {
r = new TreeNode(c);
nodeMap[c] = r;
t->rchild = r;
}
}
int size = 1, level = 1;
queue<TreeNode *> q;
q.push(root);
while (!q.empty()) {
int newSize = 0;
int flag = level % 2;
if (flag) ofs << level << ": ";
for (int i = 0; i < size; i++) {
if (flag && i != 0) ofs << " ";
t = q.front();
q.pop();
if (flag) ofs << t->val;
if (t->lchlid) {
q.push(t->lchlid);
newSize++;
}
if (t->rchild) {
q.push(t->rchild);
newSize++;
}
}
if (flag) ofs << endl;
size = newSize;
level++;
}
return 0;
}
|
从文件input_4.txt
输入一个图,要求输出从1经过k到n的最短路径,可以有环,输出到文件output_4.txt
。
输入:
n=5
k=3
1 2 10 5 30
2 3 20
3 4 60 5 10
4 5 20
5
输出:
1 2 3 5

本题考察最短路径,1经过k到n的最短路径即1到k的最短路径加上k到n的最短路径。我们用next
数组来记录两点之间的最短路径的中间点,用g
数组来保存两点之间的路径。建议在遇到最短路径问题时直接用floyed-warshall
算法,简单粗暴,便于记忆。考场上写djkstra
还是不稳。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
#include <vector>
#include <fstream>
#include <sstream>
#include <climits>
using namespace std;
int main(int argc, char *argv[]) {
ifstream ifs("./input_4.txt");
ofstream ofs("./output_4.txt");
int n, k;
ifs.ignore(2);
ifs >> n;
ifs.ignore(3);
ifs >> k;
ifs.ignore(1);
vector<vector<int>> g(n+1, vector<int>(n+1, INT_MAX));
vector<vector<int>> next(n+1, vector<int>(n+1, 0));
for (int i = 0; i < n; i++) {
g[i][i] = 0;
next[i][i] = i;
}
string line;
while (getline(ifs, line)) {
istringstream iss(line);
int src, dst, distance;
iss >> src;
while (iss >> dst >> distance) {
g[src][dst] = distance;
next[src][dst] = dst;
}
}
for (int x = 0; x < n; x++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (g[i][x] == INT_MAX || g[x][j] == INT_MAX)
continue;
int sum = g[i][x] + g[x][j];
if (sum < g[i][j]) {
g[i][j] = sum;
next[i][j] = x;
}
}
}
}
int cur = 1;
ofs << cur;
while (cur != k) {
cur = next[cur][k];
ofs << " " << cur;
}
while (cur != n) {
cur = next[cur][n];
ofs << " " << cur;
}
return 0;
}
|